行业分享 | 工信部发布《数字孪生白皮书2020》

位置:首页 / 新闻中心 / 公司新闻

公司新闻 Admin 2021-09-15 16:42:00 339

编者荐语:

数字孪生的实现需要传感技术、通信、动态仿真、云计算、人工智能等新一代信息技术的融合,以各技术要素发展阶段看,以数字孪生连接“人、物理实体、虚拟智能体等行为体”共同协作和互动的萌芽已在眼前,将对各行业设计、开发、制造和服务等场景产生影响。



11月11日消息,《由商务部、科技部、工信部、国家发改委、农业农村部、国家知识产权局、中国科学院、中国工程院等部委和深圳市人民政府共同举办的中国国际高新技术成果交易会正式开幕。作为大会主会场的重要组成部分,由工信部下属中国电子技术标准化研究院主办的新一代信息技术产业标准化论坛作如期举行,会议现场发布了由工信部牵头2020年《数字孪生白皮书》。
当前,世界正处于百年未有之大变局,数字经济已成为全球经济发展的热点,美、英、欧盟等纷纷提出数字经济战略。数字孪生等新技术与国民经济各产业融合不断深化,有力推动着各产业数字化、网络化、智能化发展进程,成为我国经济社会发展变革的强大动力。
未来,所有的企业都将成为数字化的公司,这不只是要求企业开发出具备数字化特征的产品,更指的是通过数字化手段改变整个产品的设计、开发、制造和服务过程,并通过数字化的手段连接企业的内部和外部环境 。

数字孪生概述

1、 数字孪生发展背景

“孪生”的概念起源于美国国家航空航天局的“阿波罗计划”,即构建两个相同的航天飞行器,其中一个发射到太空执行任务,另一个留在地球上用于反映太空中航天器在任务期间的工作状态,从而辅助工程师分析处理太空中出现的紧急事件。当然,这里的两个航天器都是真实存在的物理实体 。
2003 年前后, 关于数字孪生( Digital Twin) 的设想首次出现于Grieves 教授在美国密歇根大学的产品全生命周期管理课程上。但是,当时“Digital Twin”一词还没有被正式提出, Grieves 将这一设想称为“Conceptual Ideal for PLM( Product Lifecycle Management)”,如下图所示。尽管如此,在该设想中数字孪生的基本思想已经有所体现,即在虚拟空间构建的数字模型与物理实体交互映射,忠实地描述物理实体全生命周期的运行轨迹 。

▲PLM 中的概念设想

直到 2010 年,“Digital Twin”一词在 NASA 的技术报告中被正式提出,并被定义为“集成了多物理量、多尺度、多概率的系统或飞行器仿真过程”。2011 年,美国空军探索了数字孪生在飞行器健康管理中的应用,并详细探讨了实施数字孪生的技术挑战。2012 年,美国国家航空航天局与美国空军联合发表了关于数字孪生的论文,指出数字孪生是驱动未来飞行器发展的关键技术之一。在接下来的几年中,越来越多的研究将数字孪生应用于航空航天领域,包括机身设计与维修,飞行器能力评估,飞行器故障预测等 。

▲数字孪生行业应用

近年来,数字孪生得到越来越广泛的传播。同时,得益于物联网、大数据、云计算、人工智能等新一代信息技术的发展,数字孪生的实施已逐渐成为可能。现阶段,除了航空航天领域,数字孪生还被应用于电力、船舶、城市管理、农业、建筑、制造、石油天然气、健康医疗、环境保护等行业,如上图所示。特别是在智能制造领域,数字孪生被认为是一种实现制造信息世界与物理世界交互融合的有效手段。许多著名企业(如空客、洛克希德马丁、西门子等)与组织(如 Gartner、德勤、中国科协智能制造协会)对数字孪生给予了高度重视,并且开始探索基于数字孪生的智能生产新模式 。

2、 数字孪生的定义及典型特征

标准化组织中的定义:数字孪生是具有数据连接的特定物理实体或过程的数字化表达,该数据连接可以保证物理状态和虚拟状态之间的同速率收敛,并提供物理实体或流程过程的整个生命周期的集成视图,有助于优化整体性能。
学术界的定义:数字孪生是以数字化方式创建物理实体的虚拟实体,借助历史数据、实时数据以及算法模型等,模拟、验证、预测、控制物理实体全生命周期过程的技术手段 。
从根本上讲,数字孪生可以定义为有助于优化业务绩效的物理对象或过程的历史和当前行为的不断发展的数字资料。数字孪生模型基于跨一系列维度的大规模,累积,实时,真实世界的数据测量 。
企业的定义:数字孪生是资产和流程的软件表示,用于理解、预测和优化绩效以实现改善的业务成果。数字孪生由三部分组成:数据模型,一组分析或算法,以及知识 。
数字孪生公司早已在行业中立足,它在整个价值链中革新了流程。作为产品,生产过程或性能的虚拟表示,它使各个过程阶段得以无缝链接。这可以持续提高效率,最大程度地降低故障率,缩短开发周期,并开辟新的商机:换句话说,它可以创造持久的竞争优势 。
从数字孪生的定义可以看出,数字孪生具有以下几个典型特点:
1、互操作性 :数字孪生中的物理对象和数字空间能够双向映射、动态交互和实时连接,因此数字孪生具备以多样的数字模型映射物理实体的能力,具有能够在不同数字模型之间转换、合并和建立“表达”的等同性 。
2、可扩展性 :数字孪生技术具备集成、添加和替换数字模型的能力,能够针对多尺度、多物理、多层级的模型内容进行扩展。
3、实时性 :数字孪生技术要求数字化,即以一种计算机可识别和处理的方式管理数据以对随时间轴变化的物理实体进行表征。表征的对象包括外观、状态、属性、内在机理,形成物理实体实时状态的数字虚体映射。
4、保真性 ”:数字孪生的保真性指描述数字虚体模型和物理实体的接近性。要求虚体和实体不仅要保持几何结构的高度仿真,在状态、相态和时态上也要仿真。值得一提的是在不同的数字孪生场景下,同一数字虚体的仿真程度可能不同。例如工况场景中可能只要求描述虚体的物理性质,并不需要关注化学结构细节 。
5、 闭环性 :数字孪生中的数字虚体,用于描述物理实体的可视化模型和内在机理,以便于对物理实体的状态数据进行监视、分析推理、优化工艺参数和运行参数,实现决策功能,即赋予数字虚体和物理实体一个大脑。因此数字孪生具有闭环性 。

3、 数字孪生与其他技术的区别

数字孪生与仿真(Simulation)的区别 :仿真技术是应用仿真硬件和仿真软件通过仿真实验,借助某些数值计算和问题求解,反映系统行为或过程的模型技术,是将包含了确定性规律和完整机理的模型转化成软件的方式来模拟物理世界的方法,目的是依靠正确的模型和完整的信息、环境数据,反映物理世界的特性和参数。仿真技术仅仅能以离线的方式模拟物理世界,不具备分析优化功能,因此不具备数字孪生的实时性、闭环性等特征 。
数字孪生需要依靠包括仿真、实测、数据分析在内的手段对物理实体状态进行感知、诊断和预测,进而优化物理实体,同时进化自身的数字模型。仿真技术作为创建和运行数字孪生的核心技术,是数字孪生实现数据交互与融合的基础。在此基础之上,数字孪生必需依托并集成其他新技术,与传感器共同在线以保证其保真性、实时性与闭环性。
数字孪生与信息物理系统(CPS)的区别 :数字孪生与 CPS 都是利用数字化手段构建系统为现实服务。其中,CPS 属于系统实现,而数字孪生侧重于模型的构建等技术实现。CPS 是通过集成先进的感知、计算、通信和控制等信息技术和自动控制技术,构建了物理空间与虚拟空间中人、机、物、环境和信息等要素相互映射、适时交互、高效协同的复杂系统,实现系统内资源配置和运行的按需响应、快速迭代和动态优化 。
相比于综合了计算、网络、物理环境的多维复杂系统 CPS,数字孪生的构建作为建设 CPS 系统的使能技术基础,是 CPS 具体的物化体现。数字孪生的应用既有产品、也有产线、工厂和车间,直接对应 CPS 所面对的产品、装备和系统等对象。数字孪生在创立之初就明确了以数据、模型为主要元素构建的基于模型的系统工程,更适合采用人工智能或大数据等新的计算能力进行数据处理任务 。
数字孪生与数字主线(Digital Thread)的区别 :数字主线被认为是产品模型在各阶段演化利用的沟通渠道,是依托于产品全生命周期的业务系统,涵盖产品构思、设计、供应链、制造、售后服务等各个环节。在整个产品的生命周期中,通过提供访问、整合以及将不同 / 分散数据转换为可操作性信息的能力来通知决策制定者。
数字主线也是一个允许可连接数据流的通信框架,并提供一个包含生命周期各阶段功能的集成视图。数字主线有能力为产品数字孪生提供访问、整合和转换能力,其目标是贯通产品生命周期和价值链,实现全面追溯、信息交互和价值链协同。由此可见,产品的数字孪生是对象、模型和数据, 而数字主线是方法、通道、链接和接口。
简单地说,在数字孪生的广义模型之中,存在着彼此具有关联的小模型。数字主线可以明确这些小模型之间的关联关系并提供支持。因此,从全生命周期这个广义的角度来说,数字主线是属于面向全生命周期的数字孪生的 。
数字孪生和资产管理壳(Asset administration Shell)的区别 :出自工业 4.0 的资产管理壳,是德国自工业 4.0 组件开始,发展起来的一套描述语言和建模工具,从而使得设备、部件等企业的每一项资产之间可以完成互联互通与互操作。借助其建模语言、工具和通讯协议,企业在组成生产线的时候,可具备通用的接口,即实现“即插即用”性,大幅度降低工程组态的时间,更好地实现系统之间的互操作性 。
自数字孪生和资产管理壳的问世以来,更多的观点是视二者为美国和德国的工业文化不同的体现。实际上,相较于资产管理壳这样一个起到管控和支撑作用的“管家”,数字孪生如同一个“执行者”,从设计、模型和数据入手,感知并优化物理实体,同时推动传感器、设计软件、物联网、新技术的更新迭代。但是,基于这两者在技术实现层次上比较相近,德国目前也正努力在把资产管理壳转变为支撑数字孪生的基础技术。

 数字孪生相关概念及内涵

1、 数字孪生生态系统

数字孪生生态系统由基础支撑层、数据互动层、模型构建与仿真分析层、共性应用层和行业应用层组成。其中基础支撑层由具体的设备组成,包括工业设备、城市建筑设备、交通工具、医疗设备组成。数据互动层包括数据采集、数据传输和数据处理等内容。模型构建与仿真分析层包括数据建模、数据仿真和控制。共性应用层包括描述、诊断、预测、决策四个方面。行业应用层则包括智能制造、智慧城市在内的多方面应用。

▲数字孪生生态系统

2、 数字孪生生命周期过程

数字孪生中虚拟实体的生命周期包括起始、设计和开发、验证与确认、部署、操作与监控、重新评估和退役,物理实体的生命周期包括验证与确认、部署、操作与监控、重新评估和回收利用。值得指出的是,一是虚拟实体在全生命周期过程中与物理实体的相互作用是持续的,在虚拟实体与物理实体共存的阶段,两者应保持相互关联并相互作用。二是虚拟实体区别于物理实体的生命周期过程中,存在迭代的过程。虚拟实体在验证与确认、部署、操作与监控、重新评估等环节发生的变化,可以迭代反馈至设计和开发环节 。

▲数字孪生生命周期过程

3、 数字孪生功能视角

从数字孪生功能视角,可以看到数字孪生应用需要在基础设施的支撑下实现。物理世界中产品、服务或过程数据也会同步至虚拟世界中,虚拟世界中的模型和数据会和过程应用进行交互。向过程应用输入激励和物理世界信息,可以得到包括优化、预测、仿真、监控、分析等功能的输出 。

▲数字孪生功能视角


数字孪生应用发展综述

1、 应用需求方向

促进数字经济与实体经济融合,加快产业升级 。当前,以新一代信息技术为代表的新兴技术突飞猛进,加速推动着经济社会各领域的发展变革。在推动形成以国内大循环为主体、国内国际双循环相互促进的新发展格局背景下,数字经济在推动经济发展、提高劳动生产率、培育新市场和产业新增长点、实现包容性增长和可持续增长等诸多方面,都发挥着重要作用 。
我国经济已经由高速增长阶段转向高质量发展阶段。我们正处在转变发展方式、优化经济结构、转换增长动力的攻关期,这为数字经济与实体经济融合发展带来了重大机遇。而数字孪生作为一项关键技术和提高效能的重要工具,可以有效发挥其在模型设计、数据采集、分析预测、模拟仿真等方面的作用,助力推进数字产业化、产业数字化,促进数字经济与实体经济融合发展。
产业发展中的转型升级,不仅是技术问题,也不仅是管理问题;不只是商业交换问题,也不仅是商业模式问题,而是一种新的价值模式的问题,是要重新定义一个价值体系和产业结构。数字孪生系统和智能供应链不是从技术层面,更多的是从为企业创造价值,为企业转型,为企业找到新的价值模式层面,发挥现实作用 。
贯通工业生产信息孤岛,释放数据价值 。当前工业生产已经发展到高度自动化与信息化阶段,在生产过程中产生大量信息。但由于信息的多源异构、异地分散特征易形成信息孤岛,在工业生产中没有发挥出应有价值。
而数字孪生为工业产生的物理对象创建了虚拟空间,并将物理设备的各种属性映射到虚拟空间中。工业人员通过在虚拟空间中模拟、分析、生产预测,能够仿真复杂的制造工艺,实现产品设计,制造和智能服务等闭环优化。数字孪生是未来数字化企业发展的关键技术,例如可应用于以下的常见工业领域 :
1、工业产品设计 :工业产品设计过程中,在没有数字化帮助下,设计产品要经历很多次迭代,非常耗费资源并影响交付工期。在高度集成化的工业生产线设计中,需要基于精准的节拍对各设备、物料、质检、人工装配等环节进行优化协调,以提升整体效率。
在传统规划过程只能依造人工模拟或者在真实产线中进行验证。因此工业产品设计,以及工业产线设计过程中,可以在虚拟的三维数字孪生空间中进行部件修改调整,产品尺寸装配等,以及在虚拟产线中进行设计优化、问题诊断内容,从而大幅降低产品验证工作和装配可行性,大幅减少迭代过程中设备的制造工作量、工期及成本。
2、 工业产品生产 :在当前高度信息化和集成化的工业生产模式,生产线发生意外故障时,很容易致使全产线停机停产,例如高度精细化的汽车生产线,会造成每天数百万级的损失。对于一些特殊工艺生产线,比如高温高压下的化工生产线,甚至面临严重的安全风险和衍生灾害。因此工业生产过程中需要基于大量数据,在虚拟数字空间中进行例如设备诊断、化学类生产过程的模拟,以及对当前设备状态和生产工艺下结果的仿真预测等,从而防止现场故障、生产异常产生出严重后果 。
3、 统筹协调系统内外部变化,实现资源能源优化配置 :目前,在数字孪生制造系统已经成为了制造业的研究热点,实现不同产品生产过程的资源能源优化成为当前的迫切需求。数字孪生制造系统与传统制造系统相比,具有生产要素多样、动态生产路径配置、人 / 机/ 物自主通讯、自组织和数据支撑的决策等特点 。
实现资源能源优化需要制造系统各部件具有自主智能并能通过群体协商寻求全系统稳定配置参数并保持各自部件利益最大化,动态决策系统还需要系统对外部环境变化及内部故障进行实时重分配与平衡。生产系统是根据内部条件和外部环境的变化,对其内部实行新的组合,从而使生产系统自身结构和功能不断创新的演进过程。
在面对个性化定制生产中出现的生产要素多样、资源配置复杂问题,研究如何进行生产过程中资源能源的组织行为和组织形态动态变迁的有序化处理,实现生产资源能源的优化配置 。
一个开放的系统,在平衡状态的条件下可以由无序到有序的方向发展,有序的组织通过一个“自组织”实现从低级到高级的发展,这其中需要能量消耗。也就是说系统通过正反馈与外界交互物质和能量达到有序状态的不断增加,当超越某一临界值时,便达到了更高一级的阶段,这一阶段就是耗散结构。
延伸到生产系统当中,如图所示,面对个性化生产,生产系统中的资源在不同订单的输入下是混沌状态或者是无序状态。通过耗散结构理论,输出的状态是不同订单具有不同的设备应用以及设备之间的有序排列 。
在数字孪生制造系统资源能源优化中,系统的复杂性程度越大,制造过程的不确定性越大,制造系统的资源能源优化困难程度增大。
数字孪生制造系统中资源能源利用耗散理论进行优化配置:首先将混乱无序的生产资源进行机器间关联,然后根据算法将关联设备按订单需求进行串联,形成有序化排列,利用优化仿真进行生产预测,构建出资源分配与生产效益之间的定性映射关系数学模型。最终形成有序化资源能源配置。

▲资源能源优化配置

数字孪生与传统的仿真技术都具有资源优化的能力。但是传统的仿真技术通常只是物理实体在数字空间单向和静态的映射,主要用于提升产品设计的效率,降低物理测试成本。相比于仿真技术,在物联网、人工智能、大数据分析等新兴技术的加持下,数字孪生对于资源优化有着更深远的帮助 :
双向:数字孪生是对真实物理产品、设备或过程的动态和持续更新的表示。数字孪生能够理解、预测产品、设备或过程,乃至能对物理产品实施控制、改变产品的状态让很多原来由于物理条件限制、必须依赖于真实的物理实体而无法完成的操作变得触手可及,从而实现对于产品、设备或过程的相关要素资源的优化,并进一步激发数字化创新 。
持续:数字孪生和物理产品之间的互动是不间断的,贯穿产品的全生命周期。在一定的程度上用来可以直接描述它对应实体对象的状态,确保我们对实体对象状态的可见。更重要的是帮助我们更深入地辨认发生的事件(如质量、故障),理解其原因,并能对未来可能发生的事件提供预测,从而降低企业进行产品创新、模式创新中的成本、时间及风险,并且持续地推动产品优化,改善客户体验,极大地驱动了企业创新行为。
开放:通过数字孪生收集到的海量数据,单靠企业自身的力量来分析和挖掘其中的价值是不够的,企业需要将数据对第三方开放,借助外部合作伙伴的力量充分挖掘数字孪生的价值。
互联:数字孪生的意义不仅如此,还包括价值链上下游企业间的数据集成以及价值链端到端集成,本质是全价值链的协同。产品数字孪生作为全价值链的数据中心,其目标是实现全价值链的协同,因此不仅是要实现上下游企业间的数据集成和数据共享,也要实现上下游企业间的产品协同开发、协同制造和协同运维等 。
4、 实现全要素数字化,推动新型智慧城市建设 :中国的人口增长率尽管在新世纪呈现逐年下滑趋势,但受到人口基数和明显加快的城市化水平的影响,中国的人口在 2019 年已经升至 14亿人口增长。人口的急剧增加与都市化发展带来的交通拥堵、治安恶化、大气污染、噪音污染等多种“城市病”正严重影响着我们的生活。
城市过大,在短时间过多人口集中到城市,不可避免地产生大批失业、交通拥堵、犯罪增加、环境恶化、淡水和能源等资源供应紧张等现实问题。以及由上述问题引起的城市人群易患的身心疾病,这些问题和矛盾又在一定程度上制约了城市的发展,加剧了城市政府的负担,使城市政府陷入了两难困境 。
智慧城市建设发展已近十年,至今却无一个城市自我标榜已建成了智慧城市。事实上,智慧城市面临技术和非技术两大瓶颈难以突破,可谓举步维艰。所谓技术瓶颈,是指基于云计算和互联网的聚合式的模式创新比较成功,而基于物联网、大数据、人工智能、区块链、量子通信等技术的原始创新极度缺乏,未出现杀手级应用,各功能模块有机融合的 ONE ICT 架构未能实现,造成创新只停留在表面,城市运行和治理的水平有量的提升,但没有质的改变。
所谓非技术瓶颈,表现在智慧城市建设所需的庞大资金问题一直没有找到解决之道,政府和市场边界不好划分,工程周期长投入大充满变数,企业盈利和资本回报前景模糊,观望踯躅之下,推进效果可想而知。此外,彰显智慧所必须的资源共享与业务协同机制也一直没有建立起来,信息打通仍困难,协同共治难实现。两大瓶颈悬而未决导致智慧城市疲态尽显停滞不前,现有的建设发展模式亟待突破 。
数字孪生城市通过对物理世界的人、物、事件等所有要素数字化,在网络空间再造一个与之对应的“虚拟世界”,形成物理维度上的实体世界和信息维度上的数字世界同生共存、虚实交融的格局。物理世界的动态,通过传感器精准、实时地反馈到数字世界。数字化、网络化实现由实入虚,网络化智能化实现由虚入实,通过虚实互动,持续迭代,实现物理世界的最佳有序运行 。
数字孪生城市将推动新型智慧城市建设,在信息空间上构建的城市虚拟映像叠加在城市物理空间上,将极大地改变城市面貌,重塑城市基础设施,形成虚实结合、孪生互动的城市发展新形态;借助更泛在、普惠的感知,更快速的网络,更智能的计算,一种更加智慧化的新型城市将得以创建 。
数字孪生城市不仅赋予了城市政府全局规划和实时治理能力,更带给所有市民能感受到的品质生活体验。
提升城市规划质量和水平:数字孪生城市执行快速的“假设”分析和虚拟规划,可迅速摸清城市“家底”,把握城市运行脉搏;在规划前期和建设早期了解城市特性、评估规划影响,避免在不切实际的规划设计上浪费时间,防止在验证阶段重新进行设计,以更少的成本、更快的速度, 推动创新技术支撑智慧城市顶层设计落地 。
推动以人为核心的城市设计:实现智慧城市建设协同创新。数字孪生城市关注城乡居民出行轨迹、收入水准、家庭结构、日常消费等,对相关数据进行动态监测,并纳入模型,实现协同计算。同时,通过在信息空间上预测人口结构和迁徙轨迹、推演未来的设施布局、评估商业项目影响等。优化智慧城市建设并评估其成效,辅助政府在信息化、智慧化建设中的科学决策,避免走弯路或重复、低效建设 。
节省市民出行时间总成本:第一时间感知路况、事故报警、拥堵分流。为市民消除设备安全隐患,通过全城治安事件实时监测为市民带来关怀与安全感 。
营造更加文明的社会风气:对于践踏草坪、非机动车占用机动车道、非机动车逆行等行为,在线推送到城市监督部门曝光,有效地起到警示作用,提升全民文明风气。
当前智慧城市应用需求主要包括以下几个部分:
智慧城市规划 :在新区总体规划与详细规划公布以及城市方案设计阶段,需要将未来城市规划面貌按照 1:1 复原真实城市空间,不同于以往传统的规划图纸与效果图,以最直观的方式呈现在城市管理者,城市设计者与大众面前。在细度上将数据颗粒度细化到建筑内部的一根水管、一根电线、一个机电配件,以及建筑外部的一草一木,在广度上覆盖了地上的地块、河流、道路、建筑,地下的管网、隧道和地铁线路,为城市建设实现可视化赋能,全面查看展望对城市未来蓝图,推演城市规划。
协助城市管理者更直观与全面地对比城市设计方案,更好地做出城市规划决策。服务于城市规划、建设、运营全生命周期,为城市综合指挥中心各部门提供一张在线的蓝图,为后续城市建设提供支持 。
数据面板需融合城市数据概况,人口密度,新城人口规划、建设用地规划、主城区规划等规划类相关数据,直观展示城市现状与未来规划指标。
智慧城市设计施工 :在城市设计与施工阶段,需要通过三维数字仿真平台与工地基建仿真还原,在实现工程施工可视化智能管理的前提下,提高工程管理信息化水平 。
数据面板需展示环境实时监测数据,项目工程信息,节点计划,现场管理人员名单与类型统计。做到项目管理、人员管理、安全管理一张图,保证施工人员安全实现人员高效管理调度,维护施工环境的绿色安全 。
智慧城市管理运营 :城市治理是推荐国家治理体系和治理能力现代化的总要内容,数字孪生仿真是实现“以数据智能支撑赋能行业,实现城市公共资源的优化配置和智能调度”的关键,是城市实现可调度、可运营、可评价的核心所在 。
借助数字孪生技术,构建数字孪生城市运行场景,将极大改造城市面貌,重塑城市基础设施,实现对动态优化配置全市公共资源影响评估,并建设数字驾驶舱以数字化方式展现现在城市运营态势,实现城市管理决策协同化和智能化“态势有洞察”、“决策有支撑”、“处置有闭环”,确保城市安全、有序运行。
5、优化城市设计布局,打造科学公共服务体系 :公共服务,是 21 世纪公共行政和政府改革的核心理念,包括加强城乡公共设施建设,发展教育、科技、文化、体育、政务、交通、司法等公共事业,为社会公众参与社会经济、政治、文化活动等提供保障 。
城市是一个开放庞大的复杂系统,具有人口密度大、基础设施密集、子系统耦合等特点。如何实现对城市各类数据信息的实时监控,围绕城乡公共设施建设,发展科技、文化、政务、交通、司法等等多方面对城市进行高效管理,是现代城市建设的核心 。
6、基于医疗大数据合理分配医疗资源,提升公共健康保障效率 :智慧医疗保健是数字孪生智能化应用的重要组成部分。通过移动监测、移动诊室、无线远程会诊、智慧处方、医疗信息云存储等智能技术手段,可提升城市诊疗覆盖面与效率,促进城市医疗资源的合理化分配。进一步利用物联网技术构建“电子医疗”服务体系,实现医疗监护设备的小型化、无线化、发展智慧家庭健康保健、智能健康监护,可大幅降低城市公众医疗负担,缓解城市医疗资源紧缺的压力。具体应用需求如下 :
基于患者的健康档案、就医史、用药史、智能可穿戴设备监测数据等信息可在云端为患者建立“医疗数字孪生”,并在生物芯片、增强分析、边缘计算、人工智能等技术的支撑下模拟人体运作,实现对医疗个体健康状况预测分析和精准医疗诊断。
如基于医疗数字孪生应用,可远程和实时地监测心血管病人的健康状态;当智能穿戴设备传感器节点测量到任何异常信息时,救援机构可立即开展急救。同样通过医疗数字孪生还可通过在患者体内植入生物医学传感器来全天监控其血糖水平,以提供有关食物和运动的建议等。
精准医疗 。精准医疗是未来的诊疗模式。基于医疗数字孪生,医生可通过对患者健康大数据(基因、生活习惯、家族病史和病例)的搜集和分析,进而提出个性化、针对性的治疗方式和药物,实现精准诊断与治疗。这种模式不仅用于患者的疾病治疗,更侧重于对人们疾病的预防。最大的可能是医生根据患者的基因、生活习惯等因素制定独特的药物和方案。个性化药物使医疗效率得到优化,药物副作用降低,住院率下降,最终会体现在患者整体医疗成本的下降,也缓解了医疗资源的不足问题 。
健康监测与管理 。在个人的健康监测与管理方面,通过数字孪生可以更清楚地了解我们身体的变化,对疾病做出及时预警。未来通过各种新型医疗检测和扫描仪器以及可穿戴设备,我们可以完美地复制出一个数字化身体,并可以追踪这个数字化身体每一部分的运动与变化,从而更好地进行健康监测和管理。但同时,时刻监测反馈所带来的心理暗示是否会影响人类健康又会成为课题 。
远程医疗 。通过 5G 等传输技术,远程医疗也将能够更为普及。目前全国首例基于 5G 的远程人体手术——帕金森病“脑起搏器”植入手术成功完成,这对实现优质医疗资源下沉、实现自动诊疗有着重要意义 。
对于城市管理而言,掌握了城市居民群体的医疗数字孪生,有助于合理规划和分配医疗资源,以及辅助社保、扶贫等政策制定 。

2、 数字孪生产业图谱

▲数字孪生产业图谱

数字孪生可划分为“基础支撑”、“数据互动”、“模型构建”、“仿真分析”、“共性应用”、“行业应用” 6 大核心模块,对应从设备、数据到行业应用的全生命周期。国内外主要厂商主要有建模业务、仿真业务、平台业务、行业服务业务四大类 。
基础支撑层 :基础支撑层是物联网的终端,主要是一些芯片、传感器等设备,用于数据的采集以及向网络端发送 。
芯片是物联网终端的核心元器件之一,据市场调研公司 ABI Research预计,在 2020 年通过物联网进行无线连网的设备总数将达到 300 亿台。不少芯片巨头将物联网芯片作为下一个博弈的领域,目前,主要的国外物联网芯片提供商包括高通、英特尔、 ARM、 AMD、三星、英伟达等。谷歌、华为与阿里等科技巨头也进入该领域,如谷歌深度学习芯片 TPU、华为海思和阿里主攻芯片的平头哥。
传感器是物联网终端市场的重要组成部分。目前主要由美国、日本、德国等少数几家公司主导,如博世、意法半导体、德州仪器、霍尼韦尔、飞思卡尔、英飞凌、飞利浦等。国内代表性的企业有汉威电子、华工科技等,但市场份额相对较小 。
边缘计算让数据处理更靠近数据源头一侧,实现在边缘侧的数据采集、清理、加工、集合,从而大大缩短延迟时间,减少网络传输量,是物联网硬件的一个发展趋势。典型企业如英特尔、 ARM、戴尔,国内的华为、研华科技等硬件企业都开始进军边缘计算市场。
监控设备能够采集图像信息,结合强大的边缘设备分析能力,在人脸识别、交通监控等方面有广泛的应用,是智能城市的重要环节。典型企业有海康威视、大华等。

▲典型基础支撑设备厂商

数据互动层 :数字孪生的构建和应用需要软件定义的工具和平台提供支持,如Bentley 的 iTwin Service, ANSYS 的 TwinBuilder,微软的 Azure,达索的3D Experience 等。但从功能性的角度出发,这些工具和平台大多侧重某 一或某些特定维度,当前还缺乏考虑数字孪生综合功能需求的一体化综合平台。
经过多年发展,工业 / 工程 / 城市场景的不同工具的边界逐渐消失。国际上 Autodesk 与 ESRI 建立战略合作关系,企图把 BIM 和 GIS 数据融合起来;与此同时, Bentley Systems 跟西门子、 Cesium 和 AGI 等公司力推开源数字孪生联盟,围绕 iModel.js,形成了数据驱动的开源体系。
国内以传统 GIS 平台软件和基于开源渲染引擎二次开发的产品开始向数字孪生平台转型,其中以泰瑞的 SmartTwins 数字孪生底座平台为代表。国内市场的研发和销售市场规模达数十亿人民币,国内外有数十家企业相互竞争。技术层面, Esri 和超图的二维 GIS 软件技术成熟、研发实力较强;Skyline 和泰瑞在三维 GIS 研发上经验丰富,一直处于行业领先位置。从市场需求来看,传统 GIS 软件发展多年,需求已趋饱和。
但是,随着倾斜摄影技术的广泛应用和智慧城市的迫切需求,功能涵盖了三维 GIS 软件的数字孪生平台需求量呈指数级增长。这个领域中,主要包括的国际巨头有 Esri 和 Skyline,国内的 GIS 优秀研发企业有 SuperMap(超图)、SmartEarth(泰瑞)。其他的国外主要竞争对手包括谷歌公司、美国数字地球公司、美国环境系统研究所公司、法国信息地球公司等 。
仿真分析层 :仿真业务是指为数字化模型中融入物理规律和机理。不仅建立物理对象的数字化模型,还要根据当前状态,通过物理学规律和机理来计算、分析和预测物理对象的未来状态。其中又分为工业仿真软件和复杂系统(交通和物流等)仿真软件。工业仿真软件,这里主要指计算机辅助工程 CAE( Computer Aided Engineering)软件,包括通常意义上的 CAD,CAE, CFD, EDA, TCAD 等。
目前中国 CAE 软件市场完全被外资产品占据,如 ANSYS,海克斯康( 2017 年收购 MSC), Altair,西门子,达索,Cadence, Comsol, Autodesk, ESI, Synosys, Midas, Livemore 等。
国内此方面以安世亚太为代表的国产模拟仿真软件,在多年使用和代理国外产品经验基础上开发出了国产化的替代方案,但目前还无法达到国外一线产品的水平。泰瑞在 2020 年推出工业仿真云产品,也以云服务模式进入这一市场。特斯联 AIoT 体系通过将虚拟现实技术、 3D 建模技术、 GIS技术以及 VR 技术相结合,推出城市级仿真平台 。
模型构建层 :建模业务是指为用户提供数据获取和建立数字化模型的服务,建模技术是数字化的核心技术,譬如测绘扫描、几何建模、网格剖分、系统建模、流程建模、组织建模等技术。市场规模达数百亿人民币,主要由国有测绘企业主导市场,大约有 50 多家企业,其中,高德和百度的成功主要由于其庞大的用户群体和广泛的市场应用。
总体来说,主营数据业务的企业除了在硬件集成和相机飞机研发上有技术投入,软件能力都比较弱,以采购国外软件为主。据调研,全国有 800 家甲级测绘资质企业, 50 家航测甲级单位。现有的数据业务在大地测量等传统服务方面供大于求,但在倾斜航测等业务领域严重供不应求。测绘数据服务领域中,主要的软件包括泰瑞的 Photomesh、 Bentley 的 ContextCapture 和街景工厂的 StreetFactory 。
共性应用层 :数字孪生的构建和应用需要软件定义的工具和平台提供支持,如Bentley 的 iTwin Service, ANSYS 的 TwinBuilder,微软的 Azure,达索的3D Experience 等。平台的优势在于,一是系统架构支持基于单一数据源实现产品全生命周期的管理,实现了数据驱动的产品管理流程。
二是实现了不同行业、应用的打通,并支持其他模型通过 API 接入平台。但从功能性的角度出发,这些工具和平台大多侧重某一或某些特定维度,当前还缺乏考虑数字孪生综合功能需求的一体化综合平台。经过多年发展,工业 / 工程 / 城市场景的不同工具的边界将逐渐消失。
典型的数字孪生平台 
1、 达索——3D Experience
达索凭借航空业 CAD 设计软件的沉淀以及收购策略,建立了复杂的产品线。2012 年,达索提出 3DEXPERIENCE 战略,并于 2014 年推出 3DEXPERIENCE 平台,通过统一的平台架构,把旗下的产品逐步统一到一个平台上。实现了设计、仿真、分析工具( CATIA、 DELMIA、SIMULIA、……)、协同环境( VPM)、产品数据管理( ENOVIA)、社区协作( 3DSwym)、大数据技术( EXALEAD)等多种应用的打通。2019 年,达索与 ABB 建立全球合作伙伴关系,为数字化工业客户提供从产品全生命周期管理到资产健康的软件解决方案组合 。
2、 ANSYS——TwinBuilder
ANSYS 拥有一整套仿真解决方案,包括平台、物理知识和系统功能,集成多款建模仿真软件。ANSYS 的 TwinBuilder 是针对数字孪生的产品软件包,它将多域系统建模器的强大功能与广泛的 0D 应用程序专业库、3D 物理求解器和降阶模型 (ROM) 功能相结合。第三方工具集成功能帮助将各种来源的模型组合到完整的系统中进行协同仿真。通过嵌入式软件开发工具,用户可以重复使用现有组件并快速创建产品的系统模型 。
ANSYS 仿真平台可以连接到各种工业互联网平台进行数据访问和协同,诸如 PTC 公司的 ThingWorx 平台和 GE 公司的 Predix 平台。ANSYS与 PTC 合作做运行泵的仿真模型,能够比通常采用的试错方法更快地诊断和解决运行故障问题 。
3、 微软——Azure
微软是数字孪生的一个新进玩家,在 2018 年发布了 Azure DigitalTwins 平台,可用于全面的数字模型和空间感知解决方案,可应用于任何物理环境。Azure 数字孪生可提供物理环境及相关设备、传感器和人员的全面虚拟呈现形式,并全面支持物联网和端点设备之间的双向通讯,提供开放式的建模语言以及实时的执行环境,并有 Azure 强大的服务生态( Azure AI、 Azure 存储、 Office365)等作为支持。
4、 上海优也 —— Thingswise iDOS
优也 Thingswise iDOS 平台把数字孪生技术作为核心无缝融入工业互联网平台,无论在国内还是在国际上都具有独到之处。建基于云原生、大数据、机器学习 / 人人工智能和微服务等新一代的 IT 技术,优也Thingswise iDOS 平台以数字孪生层作为核心功能层,下启物联层,上承应用层,构成具备多种图形开发工具,功能丰富和自成体系的工业互联网 PaaS 平台,既可部署在各大公有云环境,也可部署在私有云的虚机或物理裸机集群上,甚至也可部署在软硬一体化的机柜里,灵活实现可边可云,云边融合的架构。
在数孪层,用户可以使用可视化设计台定义设备等对象的数字孪生体,梳理数据,融合算法模型,定义设备上下游的关系,对下联通设备数据,在数字空间动态地反映生产现场实际工况以及支持算法模型的计算,对上的支持数据驱动的工业智能应用 。
行业应用层 :行业解决方案是针对行业需求的数字孪生技术在智慧城市、交通、水利、工程、工业生产、能源、自动驾驶、公共应急等领域的各种应用服务,市场规模超千亿人民币,国内外供应商超过 1000 家。其中,西门子、 GE、达索和 Bentley 因为具有基础平台软件研发和推广能力,技术实力强,对各领域有较透彻的理解,具有较强的竞争力,占有较大的市场份额。
空客、 DNV GL、 Volvo 等高端装备制造商基于数字孪生技术提高了产品研发和资产管理能力。空客通过在关键工装、物料和零部件上安装 RFID,生成了 A350XWB 总装线的数字孪生,使工业流程更加透明化,并能够预测车间瓶颈、优化运行绩效。国内的情况,比亚迪、三一集团 、 特斯联、中船重工等企业也在积极部署数字孪生系统。
三一基于 IoT 的数字孪生技术结合售后服务系统,将服务过程的几个关键指标作为竞争指标,如工程师响应时间(从接到需求电话到可以派出工程师的时间)、常用备件的满足度、一次性修复率、设备故障率等进行评价服务的好坏。通过对每一次的设备实时运行数据、故障参数以及工程师维修的知识积累,三一集团对数据进行建模,还原设备、服务等相关参与方的数字化模型,来不断的改进对应的服务响应与质量。
特斯联 AIoT 产品体系,配合算法仓库、存算一体、云边协同等独家边缘网络能力,在云平台形成提供场景应用服务的城市组件。根据不同场景类型、规模、需求的差异, AI CITY城市组件通过组合将庞杂的产业和城市场景降维成多个垂直模块,逐一升级为数字级的行业产品。从场景数据化到数据智能化,将人与基础设施、生产服务管理建立紧密联系,实现智慧社区、智慧园区、智慧消防等垂直行业的智慧管理和科技服务模式 。
支撑技术层 :
(1)云计算 :云服务和通用 PaaS 平台将形成 IT 巨头主导的产业格局由于需要高昂的资金投入和复杂的技术集成能力,云服务平台和通用 PaaS 平台成为IT 巨头“势力范围”,呈现出高度集聚的特点 。
一方面,云服务平台市场马太效应初现端倪,领军云计算厂商成为当前市场最大赢家。亚马逊 AWS 云和微软 Azure 云成为国外 GEPredix、西门子 MindSphere、 PTCThingWorx 等主流平台首选合作伙伴,国内阿里云、腾讯云、华为云也受到越来越多的企业青睐。另一方面,绝大多数通用 PaaS 平台都是 IT 巨头主导建设。例如亚马逊 AWS 在其云服务平台基础上积极引入容器、无服务器计算等技术来构建高性能 PaaS 服务;SAP推出 CloudPlatform 平台帮助企业集成新兴技术,实现应用快速开发部署。
尽管出于满足自身应用需求和布局关键技术的考虑,个别工业巨头选择自建通用 PaaS 平台,例如 GE 和西门子都曾借助 CloudFoundry 开源框架构建通用 PaaS 平台,但对于大部分企业而言,独立建设通用 PaaS 平台既不经济也无必要 。
未来,云服务平台和通用 PaaS 平台可能会被 IT 巨头整合成为通用底座平台,凭借技术和规模优势提供完整的“IaaS+通用PaaS”技术服务能力。其他企业在通用底座平台上发挥各自优势打造专业服务平台,形成“1+N”的平台体系。如紫光云引擎提供紫光 UNIPower 平台,光电缆、光伏、日化等行业龙头企业则借助其底层技术支撑能力,结合自身业务经验优势打造各类行业专属平台 。
(2)人工智能 :
1. ICT、研究机构与行业协会提供算力算法支持,成为工业智能重要支撑
三类主体现阶段提供通用关键技术能力,以“被集成”的方式为工业智能提供基础支撑。主要包括三类,一是 ICT 企业,提供几乎涵盖知识图谱、深度学习的所有通用技术研究与工程化支持,如谷歌、阿里等在知识图谱算法研究领域开展研究;
英伟达、 AMD、英特尔、亚马逊、微软、赛灵思、莱迪思、美高森美等开展 GPU、 FPGA 等深度学习芯片研发;
微软、 Facebook、英特尔、谷歌、亚马逊等开展了深度学习编译器研发;
谷歌、亚马逊、微软、 Facebook、苹果、 Skymind、腾讯、百度等开展深度学习框架研究;谷歌、微软等开展了可解释性、前沿理论算法研究。
二是研究机构,主要提供算法方面的理论研究,如加州大学、华盛顿州立大学、马克斯 - 普朗克研究所、卡耐基梅隆大学、蒙彼利埃大学、清华大学、中科院、浙江大学等在知识图谱算法研究领域开展研究;蒙特利尔大学、加州大学伯克利分校等开展了深度学习框架研究;
斯坦福大学、麻省理工、 以色列理工学院、清华大学、南京大学、中科院自动化所等开展了深度学习可解释性与相关前沿理论算法研究。三是行业协会,提供相关标准或通用技术支持,如 OMG 对象管理组织提供统一建模语言等企业集成标准的制定,为知识图谱的工业化落地奠定基础;Khronos Group 开展了深度学习编译器研发 。
各类主体以集成创新为主要模式,面向实际业务领域,整合各产业和技术要素实现工业智能创新应用,是工业智能产业的核心。
目前应用主体主要包括四类:
一是装备 / 自动化、软件企业及制造企业等传统企业,面向自身业务领域或需求痛点,通过引入人工智能实现产品性能提升,如西门子、新松、 ABB、 KUKA、 Autodesk、富士康等。
是 ICT 企业,依靠人工智能技术积累与优势,将已有业务向工业领域拓展,如康耐视、海康威视、大恒图像、基恩士、微软、 KONUX、 IBM、阿里云等。
三是初创企业,凭借技术优势为细分领域提供解决方案,如Landing.ai、创新奇智、旷视、特斯联、 ElementAI、天泽智云、 Otosense、 Predikto、 FogHorn 等。
四是研究机构,依托理论研究优势开展前沿技术的应用探索,如马萨诸塞大学、加州大学伯克利分校等在设备自执行领域开展了相应探索。
(3)边缘计算:
接入场景和需求的不同驱动连接与边缘计算平台划分为商业物联和工业物联两大阵营,并形成了相对集聚的市场发展特点。专注 M2M 的通信技术企业重点布局商业物联平台,目前市场第一梯队已经基本形成。
Ayla 物联平台通过蜂窝、 Wi-Fi 和蓝牙等联网方式实现智能家居、消费电子等商业产品的接入和管理,目前全球客户中囊括了 15 个行业排名第一的企业;通信巨头华为和思科凭借 NB-IoT、 LTE-M 等移动网络技术优势打造物联平台,被英国咨询机构 IHSMarkit 评为领域发展布局的冠亚军。
而具备自有设备整合或协议转换集成优势的装备及自动化企业是工业物联平台的主要玩家,如西门子 MindConnectNano 支持西门子 S7 系列产品通信协议及 OPC-UA,实现自家产品与 MindSphere 平台的无缝连接;自动化软件公司 Kepware 推出 KEPServerEX 连接平台,基于工业 PLC 的通信协议兼容转换,实现各类第三方工业设备的接入与管理。除此之外,还有众多企业以系统集成的方式为平台的部署实施提供定制化的工业连接解决方案。
当前,不断积累工业协议数量以提供通用化连接服务成为工业物联平台发展重要方式,红狮控制的数据采集平台目前支持 300 多种工业协议,可以接入不同类型品牌的 PLC、驱动器、控制器等产品;KEPServerEX 平台集成了 150 余种设备驱动或插件;
此外,研华科技在其新推出的 WISE 平台中也已将长期积累的 150 多种工业协议转化成为对外连接服务能力。树根互联云物联平台提供网关、 SDK 植入和云云对接3 种灵活连接模式,支持 400 多种工业协议和 300 多种设备私有协议,适配国际通用硬件接口。
这些企业正积极将工业协议接入服务向更多平台企业提供,未来有望成为工业连接领域领导者,驱动工业物联平台市场走向集聚发展。
特斯联下一代边缘计算系统采用 5G 高速无线网络作为数据承载网络的工业级网关,支持移动、联通、电信 5G 高速接入,融合了AI 算力和工业协议处理的高性能融合计算,支持视频接入解析和各类工业接口协议处理,支持国密标准的数据加密,为远程设备和站点之间的联网提供安全高速的无线连接,支持 4 路 Socket 连接 。
安全层 :区别于传统的网络安全技术,物联网网络安全更加重视对设备、通信以及数据安全的保障。具体有以下几点:( 1)设备和远程系统之间的通信加密和认证;( 2)对设备的保护;( 3)设备固件的安全升级;( 4)对威胁行为的监测和防御;( 5)数据存储的安全性。这要求物联网厂商建立从产品开发、设计到监控全周期的安全防范机制,也要求 IoT 基础设施提供商做好基础设施的安全防护。物联网安全服务商有微软 Azure、赛门铁克、 Intel 等。
微软的产品 Azure Sphere 提供基于云的安全服务,支持对 Azure Sphere 认证的芯片进行维护、更新和控制。它在设备和互联网以及各种辅助云服务之间建立连接,确保安全启动、认证设备身份、完整性和信任根,同时确保设备运行经过审核的代码库。国内阿里云、腾讯云从平台的层级提供安全保障。此外,国内领先的网络安全企业包括奇安信科技集团股份有限公司、启明星辰信息技术集团股份有限公司、深信服科技股份有限公司等 。

3、 应用发展现状

随着物联网的应用更加广泛,各个领域越来越多的企业开始计划数字孪生的部署。Gartner 的研究显示,截至 2019 年 1 月底实施物联网的企业中,已有 13% 的企业实施了数字孪生项目, 62% 的企业正在实施或者有计划实施。工业互联网是数字孪生的延伸和应用,而数字孪生则拓展。了工业互联网应用层面的可能性 。
1. 产业生态 
与美国、德国相比,数字孪生在中国的研究和受关注相对较晚。从2016 年开始,数字孪生文献发表数量进入快速增长期,直到 2019 年,数字孪生论文发表数量超过 600 篇,其中 2019 年占了近 10 年发文总数量的50% 以上。目前关注数字研究,并发表过相关报告的机构 / 作者主要来自学术界、企业界以及政府机构。
政府及相关机构:随着工信部“智能制造综合标准化与新模式应用”和“工业互联网创新发展工程”专项,

扫描微信